
C.E.P. - CONSULTING

Proposes to you a groundbreaking concept wich combine

- observation,
- bench test,
- physics,

In order to design a scientific trellis system

LE CONCEPT

OBSERVATIONS

to exchange – to observe – to explore

BENCH TESTING

to measure – to test – to understand

SMARTEST SOLUTIONS

CALCULATIONS

to confirm – to infer - to specify the material(mécanics– durability)

on post and shoot shape

With observation you can see

What you have to do

What you must evoid

Observation of the strains on the wires

Observations on the nails <u>fixation</u>

Observation about misshapenness of the streamlined posts

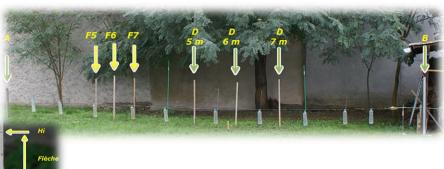
Rusting observation

Measures of zinc losses in all the french areas in all the types of soils

Observation on the head of post

EXPERIMENTATIONS on the posts

The expérimentation enable you to understand better the behaviour of the post and the wire, to confirm the formulas of calculations of the structures and infer at all the situations


Measures of flexibility

		ACIER CRANTE		
KG	N	8		
	R		4	
	I		2E-05	
	E		170000	
FORCE		MESURE	CALCUL	ECART
3	29.43	0.4	0.37	-3 mm
6	58.86	0.8	0.74	-6 mm
9	88.29	1.2	1.12	-8 mm
12	117.72	1.5	1.49	-1 mm
15	147.15	1.9	1.86	-4 mm

Interaction
betwieen post bending and
weight bearing wire

<u>Comparison</u>: measures – calculations => Formulas validation

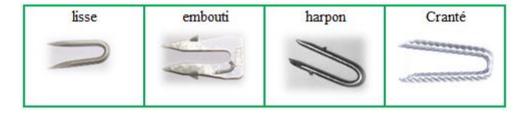
EXPERIMENTATIONS on wire

Strain measures regarding wind

Measures of the sag

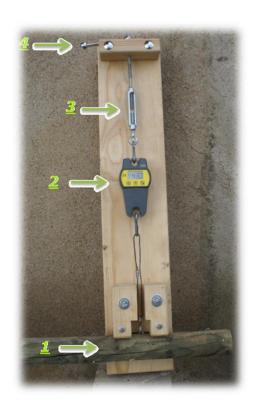
Vent	600	pascal = vent de :	113	km/h
CHARGES H	194.40	MESURE	CALCUL	ECART
		20 kg	20 kg	0.06 kg

<u>Comparison : strain measures— calculations</u> <u>—> formulas validation</u>


Distances (m)	Mesure (cm)	Calcul	ECART
7	9.6	9.188	-0.4 cm
6	7.3	6.750	-0.5 cm
5	5.1	4.688	-0.4 cm

<u>Comparison :sag measures – calculations</u>

=> formulas validation


EXPERIMENTATIONS on nails

Resistance comparisons
Between vertical or tipped bearing

Measures résistances to the wrenching

EXPERIMENTATIONS on posts

Twisting measures

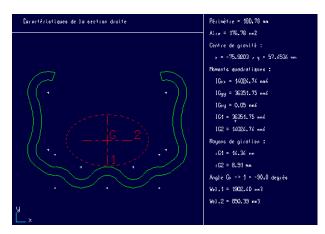
Destruction test

Longueur piquet hors sol
Effort vertical Fz
Effort horizontal Fx

Calcul contraintes / capacités du piquet à les encaisser

Piquet	Piquet
1.5 m	1.4 m
214	214
181	161
103%	84%

Calculations of résistances

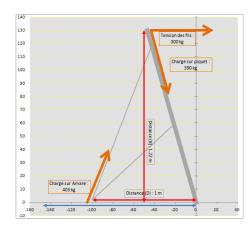


Coté tension

Coté piquet

<u>Calculations of the mechanical</u> <u>charcateristics</u>

EXPERIMENTATIONS on the anchored end post



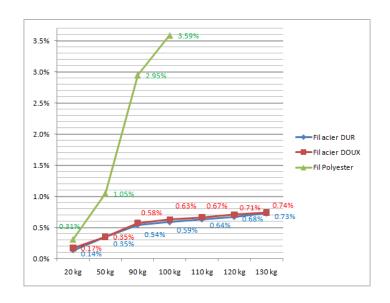
Rivolet

Cogny

<u>Alix</u>

Calculations of the strains

Calcul des efforts	RIVOLET	COGNY	ALIX	
sur le piquet	531	187	398	kg
sur l'amarre	578	195	400	kg
calcul de la hauteur verticale (A)	1.10	0.83	0.93	m
Rapport Distance (6) / hauteur (A)	53%	117%	75%	%


Comparison: strains - positions

OTHER TESTINGS

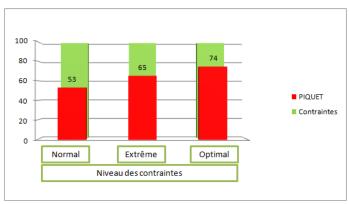
Load tets between 2 pressure points

Extension test on wire

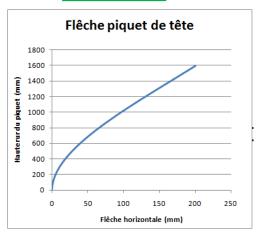
Measures of installation time

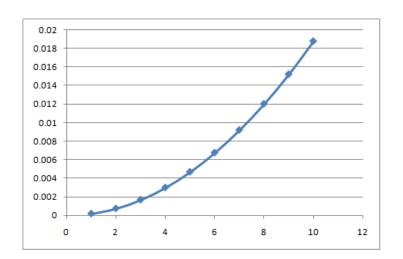
Breaking point test

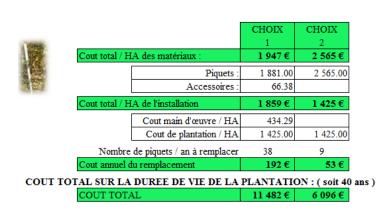
Realised in collaboration with Arts & Métiers


OPTIMIZED SOLUTIONS

These observations, tests, physical calculations, studies about times (installation, réparation, works, durability) enable us


- to delimit accurately all the parameters of the different materials in regards of their capacity to sustain the constraints of the vineyard
- to propose technico économics optimized solutions


OPTIMIZED SOLUTIONS


Size adaptation of posts to the constraints

Size adaptatio of the anchored end post to the constraints

Size adaptation of the wire to the constraints

<u>Technico economical</u> <u>comparison(products + workforce</u>

PRESTATIONS

C.E.P. – Consulting proposes :

- ✓ Professionnal training
- ✓ Counsels and guidelines for pallis set up
- ✓ Input curtailment strategy
- ✓ Technical and economical analysis
- ✓ Expertise for the study of new solutions
- ✓ Trellis system modelisation
- ✓ Specifications redaction
- ✓ Conformity controls
- ✓ Installations follow up

C.E.P. – Consulting works at the international level

With the technical institutes, chambers of agriculture, wineproducing cellars, wine advisors and the wine growers

C.E.P. - CONSULTING

«Taken as a whole, the constraints détermine the level of the strains than the equipment must sustain in the course of time »

C.E.P. est le 1° private consulting company neutral and independent for Counsel and Bench testing in trellis systems

C.E.P. – Consulting Jean – Marie LECLERCQ

165 Petit Chemin de Bordelan 69 400 Villefranche sur Saône - FRANCE

Tél: 06 70 01 72 58 Email: jml.leclercq@orange.fr

